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Extracellular vesicles: More than just
garbage disposal

Membrane bound vesicles originating from endosome and plasma membrane

Range from 50-500nm in diameter
Exosomes are a subgroup of extracellular vesicles ranging from 50-150nm

Important for numerous biological functions
Removal of waste, cell-cell communication, extracellular signaling

Carry wide variety of cargo
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Extracellular vesicle biogenesis

Canonical pathway utilizes the endosomal
sorting complex required for transport (ESCRT)
machinery

Proteins recruited to pinch vesicle off of the
membrane

Non-canonical pathways utilize physical
properties of altering membrane lipid
composition
Enriching for ceramides causes bending of
membrane to form vesicles
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Neutral Sphinghomyelinase 2 (nSMase2)
catalyzes the formation of ceramide
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Sphingomyelin (SM)

Transmembrane protein situated on the inner leaflet
Localized to the plasma membrane and golgi apparatus
Highly expressed in the brain

Has a hydrophobic N-terminal domain and catalytic C-
terminal domain

Proceedings of the National Academy of Sciences Jul 2017, 114 (28)

E5549-E5558; DOI: 10.1073/pnas.1705134114



Exosomes have been implicated in numerous
diseases

Neutral Sphingomyelinase 2 (hSMase2)-dependent Exosomal
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Alzheimer’s disease

Progressive neurodegenerative disease

Causes memory impairment and ultimately leads to 0 S DRI B)
death Mt Sinai J Med. 2010; 77(1):32-42.

. . . Amyloid plaque
Major pathologies are amyloid plaques and .,

neurofibrillary tangles

Familial AD cases have mutations leading to faulty
amyloid B processing and tau mis-folding

5.8 million living with AD in US
Expected to increase to ~14 million by 2050

No cure or treatment to slow disease progression
Treatments only target symptoms

Stage land Il Stage I énd A% Stage Vand Vi

Nat Rev Dis Primers 1, 15056 (2015)




Exosomes and neutral sphingomyelinase 2
in Alzheimer’s disease

Elevated ceramide levels have been detected in AD patient plasma and CSF (neuroscience 130, 657-666 (2005);
Neurology 79, 633-641 (2012))

Neuronal exosomes isolated from Alzheimer’s disease patient plasma have increased AD associated
proteins such as phosphorylated tau (aizheimers Dement. 2015;11(6):600-7.e1; JAMA Neurol. 2019;76(11):1340-1351.)

Analysis of neuronally derived exosome content had some predictive abilities

In the case of Alzheimer’s disease, isolated exosomes carrying tau are able to seed tau aggregation (J Biol Chem 291,24
(2016): 12445-66)




Genetic and pharmacological reduction of
nSMase2 improves AD mouse models

Genetic deletion of nSMase2 in the 5XFAD nSMase2 inhibition reduces nSMase2 inhibition slows
mouse reduces Af3; improves memory in tau accumulation in the propagation in an AAV-tau
contextual fear conditioning PS19 mouse model injection model
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No drug-like nSMase2 inhibitors
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Screened > 365,000 Compounds for human nSMase?2
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Hit optimization led to our lead compound - PDDC
potent, brain penetrable, orally bioavailable, selective nSMase2 inhibitor

BRAIN PENETRABLE ORALLY BIOAVAILABLE IN MICE AND DOGS
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PDDC inhibited extracellular vesicle release in
vitro A Neuralogy

PDDC reduces EV release;
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PDDC inhibits exosome release in vivo
Inactive compound had no effect

Seung-Wan Yoo
JHU- Neurology
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Initial analysis in 5XFAD AD model shows body welght
and behavioral improvements

Begin treating Fear conditioning
10mg/kg IP daily behavioral analysis
o Kristen H /II'
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PDDC is well tolerated in mice

Mice were treated with 10mg/kg IP PDDC for 15 weeks

Body weight monitored weekly and clinical chemistries were evaluated after 15 weeks

Body Weight, % change

Chronic PDDC does not cause weight loss

-& \/ehicle
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Parameter|Vehicle| PDDC SEM |Normal Range|P value
AST 80.67| 55.67 14.17|54 - 269 0.1525
ALT 21.33| 18.67 4.46(26 - 77 0.5821
BUN 18.67| 18.67 3.249|8 - 33 ‘0.9999
ALP 72.67| 62.33 13.37|35 - 96 0.4829
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LDH 2251 173.7 50.45 0.3665
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TP 5.633 56| 0.1333|3.5-7.2 0.8149
ALB 3.167| 3.133]| 0.04714|2.5-3.0 0.5185
TBILI 0.2667| 0.2333]| 0.04714|0.1-0.9 0.5185

CREAT 0.1667| 0.2333]| 0.04714|0.2-0.9 0.2302
CK 2451 1347 88.41|63 - 445 0.2801
PHOS 6.867| 7.367| 0.3448 0.2206




PDDC can be administered orally via mouse chow

6 month old WT mice were fed with 30mg/kg and 100 mg/kg PDDC chow for 2 weeks
PDDC was measured in plasma and brain by LC-MS

4-fold plasma increase; 5-fold brain increase
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|00mg/kg PDDC chow reduces EV release in

acute In vivo assay i
91% reduction of EV release
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|00mg/kg PDDC chow significantly inhibits ex N
vivo brain nSMase2 activity

Ex vivo nSMase?2 brain activity was measured in the IL-1B injected mice following 6
days of 100mg/kg PDDC chow treatment

PDDC significantly reduces nSMase2 activity
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PDDC chow treatment in a tauopathy
mouse model of Alzheimer’s

5XFAD mouse model does not have significant tau pathology
Phosphorylated tau levels in isolated exosomes may predict AD more effectively

Will test PDDC in the P301S (PS19) transgenic tauopathy mouse model

Behavioral analyses:

Begin vehicle Begin dosing Open Pathology and toxicity
acclimatization 100mg/kg chow field Y-maze analysis
l * Weekly body weight J-l ﬂ *
Months of age: 3.5 4 7.5 8 8




Evaluate 2 new models of tau propagation

-

Isolated P301S hTau protein [ AAV-P301LhTau-GFP
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PS19/3xTg mice C57/B6
Isolated P301S hTau seeded into PS19 mice via P301L hTau DNA introduced into MEC of WT mice via
unilateral injection into CA3 hippocampus, AAV-vector, tau propagation observed across the

propagation evaluated in contralateral hippocampus dentate gyrus of hippocampus after 1 month.
after 3 months. Asai et. al., Nat Neurosci, 2015.

Ahmed et.al., Acta Neuropathol, 2014. Cook et.. al., Hum Mol Genet, 2015
Jackson et. al. J. Neurosci, 2016. Jaworski et. al., Plos One, 2009

Iba . Al., J. Neurosci, 2013.
Goedert, Eisenberg, Crowther, Annu Rev Neurosci, 2017




Next steps

Inject P301S  Begin dosing Pathological tau
tau 100mg/kg chow spreading analysis
l Weekly body weight l
P301S | * |
hTau PS19 Weeks of age: 10 10 22
Protein
3XTEg Weeks of age: 16 16 28
Inject AAV-  Begin dosing Pathological tau
hTauP301L | 00mg/kg chow spreading analysis
AAV-hTau Weekly body weight
: —>(C57/B6
Viral
Weeks of age: | 6 16 20
Vector




Summary

|dentified PDDC, a potent, selective, orally available and brain penetrant nSMase2 inhibitor
PDDC dose-dependently inhibited extracellular vesicle release both in vitro and in vivo
In preliminary studies, PDDC led to improved cognition in an amyloid mouse model of AD

Ongoing studies examining tauopathy mouse models and more targeted tau propagation
mouse models
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